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The motion generated in an initially quiescent, incompressible, stratified, and/or 
rotating fluid of infinite extent when a spherical source begins to breathe fluid 
in and out periodically is considered. The properties of the resulting flow may be 
understood in terms of the inertial-internal waves which may propagate energy 
in the fluid. At all points located a finite distance from the source, except those 
points falling on certain conical surfaces which are tangent to the source and 
which contain the group velocity vector for waves at the source frequency, the 
flow is ultimately a steady oscillation at  the source frequency. The manner in 
which the flow depends on source frequency is discussed in detail. 

1. Introduction 
We consider the motion generated in an initially quiescent, stratified, and/or 

rotating fluid of infinite extent when a spherical source of radius a begins to 
breathe fluid in and out with periodic normal velocity cos(crt). The rotation 
vector and the direction of gravitational attraction are assumed antiparallel. The 
density field of the undisturbed fluid is supposed to be of the form exp ( -px) so 
that the Vaisala frequency, N = ( - (g/po) (ap,,/az))*, is constant throughout the 
fluid. The stratification is weak in the Boussinesq sense; density variations are 
taken into account only in calculating buoyancy forces. Although the Boussinesq 
approximation may be locally valid everywhere in the fluid, it leads to a cumula- 
tive error in the solution of this problem at great vertical distances from the 
source. An attempt to solve the more general problem yields the present solution 
as a first approximation plus further finite terms multiplied by powers of pz. We 
shall therefore make the Boussinesq approximation from the outset and then 
apply the results only at  vertical distances z from the source sufficiently small 
that $2 < 1. 

We focus attention on the flow long after the source has begun to pulsate. We 
follow the procedure of Stewartson (1952) very closely and are led to results 
similar to those obtained by Bretherton (1967) in his study of the development 
of a Taylor column in a rotating fluid. There are no advances in analysis beyond 
the work of Bretherton. The new results are a detailed description of the periodic 
flow and of the manner in which it varies as the frequency of the source is changed. 

It is convenient to work in the cylindrical co-ordinates (r ,  4,  x )  with velocity 
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components (u, v, w), in order to take advantage of the axial symmetry which we 
assume. The geometry is sketched in figure 1. 

\I/ Gravity 
FIGURE 1. 

2. Solution in integral form 
Small oscillations of the fluid about a basic state of rest are governed by the 

following set of equations (in which all subscripts denote partial derivatives 
except for the 0 subscript on the density, which refers to the undisturbed den- 
sity) : 

\ ut-fv = -p;/po, 

I vt+ f u  = 0, 

Wt = - P2PO - gPlPo, 

Pi + WPOS = 0 J 
and 

Here, f is the Coriolis parameter, P' the perturbation pressure, pa the undis- 
turbed density and p the density perturbation. The boundary conditions are 

ru+zw = uU(t )  at r2+9 = u2 

( l / r )  (ru), + w, = 0. 

(2) I and u,v,w,p+O as r,z-+co for fixed t. 
Just after the source has begun to breathe fluid in and out, the motion should 
everywhere be that which would obtain if neither rotation nor stratification 
were present. The buoyancy force cannot be important during the initial motion 
because it depends on the vertical displacement of fluid particles for its effect and 
their initial displacement is zero even though their initial velocity does not 
vanish. A somewhat similar remark may be made about the initial effect of 
rotation (Morgan 1953). The initial motion (denoted by a tilde) thus satisfies 

(3) .ii = -P'/ -?pa, G = O ,  G =  -Pz/po, p = o  
and ( l / r )  (rQT + 8, = 0, (4) 

with r.ii+zG = uU(0)  at r 2 + 9  = u2. ( 5 )  

- 1  



Impulsively started oscillations in a rotating strati$ed Jluid 515 

We now use the solutions of (3) in a Laplace transformation of (1) and (2). If 
the transformed variables are defined by 

with similar expressions for the remaining velocity components and for the 
- 

(7) 

(8) 1 
I pressure, we obtain su- fv= -Pr, 

sV+fE = 0, 

q + GPO,, = 0, 
and (l/r)(rZ),.+G, = 0, 

with ru+z@ = aC(s)  a t  r2+z2 = a2 

and zC,V,W,p finite a5 r,z+m. 
The Boussinesq approximation has been used in passing from (1) to (7) by means 
of (3) and (6). Additionally, in (7) we have written 

From (7) we have 

- 
sw = -P,-9P/P,, 

P = P'/po-P/po. 

(9) 
- J = - sFr / (s2+f2) ,  V =fFJ(s2+f2) ) ,  w = - sP, / ( s2+N2) .  

These relations enable us to obtain a single boundary-value problem in P equiva- 

with 

at r2 +- z2 = a2. 

appropriately scaling z 
We may transform the differential equation (10) to Laplace's equation by 

z ' = z  r:2y22)t. ~ 

The transformed boundary-value problem (10) and (1 1) becomes 

(12) 
1 -  
- (rPJr + Pz.,. = o r 

with 

at r2+[(s2+f2) / ( s2+N2)1~z12 = a2. 

The surface at which the boundary condition (13) is applied is a spheroid, 
oblate if f 2  > N2 and prolate if f 2  < N2. This suggests the introduction of the 
appropriate set of spheroidal co-ordinates in each case. 

(i) When f 2  > N2,  we introduce oblate spheroidal co-ordinates ( 6 , ~ )  after 
Morse & Feshback (1953). The transformed Laplace equation is 

M 2 +  1)~.515+C(1-72)~71T = 0, (14) 
33-2 
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with boundary condition 

q = - aD(s)  (s2+ N2)+ ( f 2  - N2)+ (15) 

at 5 = [(s2+N2)/(f2-N2)]9. 

The co-ordinate transformations themselves are given by 

Note that if N = 0, these reduce to  the co-ordinate transformations of Stewart- 
son (1952). 

The solution of (14) subject to boundary condition (15) is independent of q 
and is easily seen to be 

By making use of (9), we find 

Some manipulation allows us to write 

where 

2a2(f2- N2) 6 2  = {(@+ f 2)r2 + (s2 + N 2 )  z2 - ( f 2  - N2)a2} 

[{ }2+4a2(f2-N2)(s2+N2)1* (20) 
and where we have introduced 

The undetermined signs in ( 1 9 )  and (20) are identical and we show subsequently 
that the plus sign must be chosen. The significance of the frequencies C+ and C- 
will be explained when we evaluate the integrals for u, v and w. 

We therefore have for w the following integral expression 

with results for u and v obtained in a similar manner 

and 

(") (24) 
o ( s ) ( s2+fa ) ( s2+ N2)* 
( s 2 + Z ~ ) ~ ( s 2 + C ? ) ~ -  c2+ 1 ' 

21 ( r ,  z ,  t )  := 
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(ii) When f 2  < N2,  we introduce prolate spheroidal co-ordinates ( l , ~ ) ,  again 
after Morse & Feshbach (1953). The transformed Laplace equation is 

[ ( t 2 - 1 1 ) ~ ~ 1 5 + [ ( 1 - - 2 ) ~ 9 1 9  = 0, 125) 
with boundary conditions 

Ps = - a D(s)  (s2 + N2)* ( N 2  -f2)*/s (26) 
a t  
The co-ordinate transformations themselves are given by 

6 = [(s2 + N 2 ) / ( N 2  - f 2 ) ] * .  

The solution of (26) subject to (27) again has no 7 dependence and may be 
written in the form 

We now proceed exactly as when f > N 2  and find expressions for u, v and w. 
They are identical with (22), (23) and (24) except that the factor ( f 2  - N 2 )  which 
appears in these integrals and in E(s) given by (21) must be replaced by (N2 - f 2 ) ,  

and the factor g 2 +  1 appearing in (23) and (24) must be replaced by t2- 1. For 
brevity we shall discuss only the case f2  > N2.  In  both cases the surface of con- 
stant 6 corresponding to the surface of the source is 6 = ( (s2+ N2)/1 f2-  N 2  
provided that the proper choice of sign is made in (21). It is easily verified, using 
this result, that (22) and (23) together satisfy boundary condition (2) at the 
source. 

3. Infinitesmal free waves 
The flow at long times after the source has begun to pulsate may best be under- 

stood in terms of the inertial-internal waves which may propagate in a rotating 
and/or stratified fluid. Since Eckart (1960), Phillips (1963) and Sandstrom (1966), 
as well as many others, have investigated the properties of these waves, we here 
simply point out their salient features in our notation. The frequency a, of waves 
of any wavelength propagating energy at an angle 0 with the vertical is given by 

(29) 
(30) 

g 2  - - f 2 sin20+N2cos20. 

C(k) = (k/l k 1 )  ( r e / /  k I L The phase velocity is 
whereas the group velocity of energy propagation is 

k ( N2 - f 2 )  sin2 8 
PI l w 3  I k l u e  

( N 2  - f 2 )  sin 8 C,(k) = ~ -2 

(2 is a unit vector along the positive z axis). 
Clearly C . C, = 0. If energy is being radiated away from a source, the pro- 

gression of phases is towards the axis of rotation if N 2  < f and away from it if 
N2 > f 2. From (30) and (311, the magnitude of the group velocity vector may be 
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If the fluid is stratified but not rotating, (31) indicates that energy at very low 
frequencies propagates in a nearly horizontal direction, whereas if the fluid is 
rotating but not stratified, (31) indicates that the energy a t  very low frequencies 
propagates in a nearly vertical direction. In  two dimensions, Bretherton (1967) 
has shown that this ability of the waves to transmit energy at very low frequencies 
is sufficient to account for the formation of Taylor columns in a rotating fluid or 
their analogues in a stratified fluid. If both rotation and stratification are present 
simultaneously, it follows from (29) and (31) that waves propagating energy may 
exist only for frequencies between, but not including, N and f. In  particular, the 
possibility of Taylor columns at  zero frequency is then lost. Thus, a source 
oscillating at  some frequency between N and f may radiate energy via internal- 
inertial waves. But motions generated at  frequencies N or f or at  any frequency 
outside of these limits will be of the evanescent sort, trapped around the generator 
and carrying no energy away. 

4. Details of the solution 
It is convenient to work in terms of the distance R = (r2+z2)4 from point 

( r ,  z )  to the centre of the sphere and the colatitude 8 = arc cos (z/R) of point ( r ,  z ) .  
The integrals (22), (23) and (24) with definitions (20) and (21) describe the 

inviscid motion at all times, We shall take 

U(t) = cos(fTt), B(s )  = s/(s"+2) (33) 
and examine the motion after many pulsations of the source. 

We have, from (20) and (21), 

2a2(f2 - P ) C 2  = BE2 [(s2 + E",* + (s2 + XC2_)*l2 - 2a2( f - N 2 )  cos2 8. (34) 

This suggests a useful approximation as R/a-+cO for most s. We choose these 
square roots to be positive real as s -+ 0 and, therefore, likewise choose the square 
root in (21) to be positive real as s --f 0. With this choice of branch, only the choice 
of the plus sign in (21) and hence in (34) as well will make as given in (34) reduce 
to the proper function of s, given in (15) on the surface of the sphere. With this 
choice of sign, ((8) is uniquely defined. 

From (21), unless z = 0, c2(s) vanishes only if s = -I: iN. If s = f iN, we have 

and I c2( +iN) = 0 if r < a  

c2( & iN) = (r2- a2)/a2 if r > a. (35) 

Similarly, unless r = 0,  t 2 ( s )  + 1 may vanish only if s = + ij. If s = k if, we have 

<2( + if) + 1 = 0 if z < a  
and t2( if) + 1 = ( x 2 -  a2)/x2 if z > a. 

The integrands of (22), (23) and (24) thus have simple poles at s = f  if^ with 
branch points at  s = iN, s = & if. For 
r < a, [2 has simple zeros at s = iN so that the integrand of (22) is regular at  
s = + i.N if r < a. If r > a, 6 2  is not zero at s = & iN and the integrand goes as 
(82 + N2)fr near s = iN. If r = a, g 2  goes as (s2 + N2)3 near s = k iN so that the 

iC,, s = f iX- and possibly at  s = 
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integrand goes as (s2+ N2)* there. Similarly, if z < a, E2+ 1 goes as s2+f2 near 
s = f i f  so that the integrands of (23) and (24) are always regular there. 

From (34), I 6 I + co as R -+ co for most s so that the factor </( g2 + 1) appearing 
in (23) and (24) is well approximated by l / g  for large R/a. This replacement in 

(37) 
(23) leads to 

i.e. to lowest order in a /R ,  u and w are simply the components of a radial velocity 
vector. This approximation suggests the nature of the flow very far from the 
source but it is not sufficient for all purposes. In particular, a further term will be 
found necessary to conserve mass in the most intense portion of the flow. 

Some simple geometry shows that the frequencies &(r, z )  are the frequencies 
of waves which propagate energy towards the point ( r ,  z )  along the uppermost 
and lowermost tangents from the point (r, z )  to the spherical source. This is most 
easily seen by computing from (29), to lowest order in a/R, the square of the 
frequency at  which waves coming from these upper and lower tangents towards 
the point of observation (R,B) = (r ,z)  would propagate energy. The result is, 
to lowest order in a/R, Xc",(r, z )  as defined in (20). Some manipulation shows that 
the correspondence is valid for all values of R and not only for large R. Some 
convenient approximations for these frequencies C: (R, e),  all derived directly 
from the definition (ZO), are: 

u (r,  z, t)/sin 8 = w (r ,  z, t)/cos 8 if R % a, 

Zc", = a; + (a /R)  (fz - N2) sin 28 if R % a, 
C: = 2% = f2a2/z2 + N2( 1 - a2/z2) if 8 = 0, 
2; = 25 = f 2 (  1 - u2/r2) + N2a2/r2 if 8 = Jp, 
C5 = N2 if r = a, 
C: = f 2  if z =  + a  

and Z: = ZT = f2cos28+N2sin28 if R = a. 

Notice that the two frequencies become equal on the sphere, very far from it, 
directly above its centre, or in its equatorial plane. For large R, X+ (R, 8) closely 
approximates given in (29). 

5. Transient motion 
The initial transient contains energy at  all frequencies and we expect to see 

that part of the transient energy having a frequency between N and f leaving 
the source along the appropriate cones of constant 8 given by (29). The propaga- 
tion of this part of the energy of the transient away from the source has its mathe- 
matical expression in the occurrence and nature of the singularities at  s = & iC+ 
and s = 5 iZ- in the integrands of (22), (23) and (24). At a location ( R  9 u, 0 )  
not near the cone along which energy will be propagated away from the source 
at  its frequency g of pulsation, we may approximate the transient motion by 
neglecting the variation of all functions of s in the integrand of (22) except those 
contributing to the branch points at  s = + iC, and s = 2 iC- to find 
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The transient disturbance far from the sphere appears as two wave trains, one 
from the upper tangent to the sphere and one from the lower. At times small 
enough that a ( f !  -N2)sin28 

Rae 
(X+t-C-t) = t < n, 

but still large enough that C, t 9 1, the radial velocity goes as tt sin (5,t - n/4), 
i.e. it is initially a growing oscillation at  frequency go. From the magnitude (32) 
of the group velocity of energy propagation, it is evident that this corresponds 
to times sufficiently small that waves of wavelength 4a and shorter have not yet 
arrived. Only after the longest of these have arrived does the transient begin to 
decay, finally going as 

t-hsin (Vet -n/4) sin [(a( f2-N2) sin 20/R~e)t], 

the result of two interfering wave trains. 
Since, for large R, C,(R,8) are closely approximated by the frequency r e ,  

which, when f > N2,  is an increasing function of 8, lines of constant phase are 
lines of constant 8 and these move towards the axis of rotation. The transient 
therefore contain only waves which transmit energy away from the source. When 
f < N2,  is a decreasing function of 8 so that phases move away from the axis 
of rotation and again only waves carrying energy away from the source are 
present in the transient. 

This description of the transient requires modification near 8 = 0 where 
C, E N ,  and near 8 = +T, where C, N f. 

6. Flow at the source frequency 
At any point (R, 8),  the development of the flow which is harmonic at  the fre- 

quency (T of the source may be expressed as a superposition of transients emitted 
from the source at  successive times. The motion may be approximated by neglect- 
ing the variation of all functions of s in the integral except for the poles at  s = ~f: ia 
and the nearby branch points at  s = iC+, and s = f iC. The result is, by the 
convolution theorem for Laplace transforms 

a (f 2 - (T2) ( 0 2 -  N2)t t 
sin [(T (t - t')] [ J ,  (C+t')  - J ,  (C-t')]dt'. R ( f 2  - N2) ( 2  sin @)I, w ( R  9 a,B,t B a-l) = 

(40) 
The structure of the vertical velocity field is most easily seen in the limit t + 00, 

where the integration may be carried out exactly to yield 

(c; > 0-2 > X?), a ( f 2  - 0-2) ( a 2  - N2)& 
R ( f 2  - Ar2) (2  sin 0) 

cos at + 
cos at cos at 

(u2 - Z2+)S + (a2 - c2p 

w ( R  U , B , t  9 a-') = 
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a result which may also be obtained directly as the sum of the residues a t  s = & ic 

Similar expressions may likewise be obtained for the other velocity components. 
The phase and variation with position of the velocity field are quite different in 
the different regions indicated in (41). The region for which 2: > a2 > C? lies 
between the two parallel cones of constant 6' = 8, tangent to the sphere above 
and below (see figure 2). There is a rapid variation of the phase of the motion 
across this region and the vertical velocity as given by (41) grows without limit 
as we approach the edges of t,he region. Points poleward of this are contained in 
the region for which a2 > C$ > C? and those equatorward of it are contained in 
the region for which Z: > 2 > c9. These regions are sketched in figure 2. As 
R + 00 along any line of constant O other than the one for which 8 = O,, we enter 
the second and third regions. C, and C- approach one another as R --f co and the 
radial variation of the vertical velocity is R-2. As R+co along the cone of con- 
stant 8 = 8, both Cf and C- approach a itself and the radial variation of the 
vertical velocity is R-4. 

To this order of approximation in a/R,  the velocity field given by (41) and (37) 
does not display the radial variation necessary to  conserve mass within the 
region of greatest velocities. There must therefore be an appreciable flow normal 
to the cones of constant 8 = 8, along which energy a t  frequency a flows. If we 
retain the next order in a/R in summing the residues in (23) and write the result 
in terms of E ,  the normal distance from the point of observation to  the line 8 = 8, 
passing through the centre of the sphere, we obtain a flow having radial velocity 
going as (a/R)t  plus a normal component going as (a/R)g: 

in (22). 

%adial 1 - sin at  sin v t  
(./a - 1)* + (./a + l)* 

1 I[ (1 cosat - E / a ) *  - ( -  1 -€/a)+ 
cos (Tt 

and 

I - (./a - 1):sin at  + (€ /a  + 1) sin at  (. > a) ,  
(a  > e > -a) ,  

- (1 -./a)& cos Ut - ( - 1 -€/a)+ cos at  ( - a  > E ) .  

-(l--/n)8cosat+(B/a+1)&sincrt 

Unormal 
8 (f"a2)(a""2)& 

( j 2  - N Z ) ~  (sin 20,)8 

At a large radial distance from the source, the persistent forced motion is 
almost entirely confined between the two parallels, tangent to  the source above 
and below, whose direction is the direction of energy flow a t  the source frequency. 
Along these two parallels, the radial flow of (42) has become singular as t -+a for 
fixed R. For finite times, this singularity does not arise. Along the parallel 
C, = we have from (40) 
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which shows that w ultimately grows as t*. The same holds along the parallel 
C- = u. 

The flow at frequency CT is thus ultimately steady except on those cones Xk = u 
along which the source continuously radiates energy. It is approached as a 
superposition of waves arriving from the upper and lower edge of the source, 
all carrying energy away from the source. At any time along the cones C, = u, 
only waves having a certain minimum wavelength have yet arrived so that the 
amplitude of the oscillation grows without limit. 

FIGURE 2. 

Of course, the foregoing procedure must be modified whenever the point of 
observation (R, 8) is within or near the vertical cone r = a circumscribing the 
source and whenever (R, 8) is between or near the horizontal planes z = a 
tangent to the source a t  its poles because then one of the frequencies C, is very 
close to N or to f .  

7. The oscillation at the Vaisala frequency 
Some of the transient energy goes into a decaying oscillation at  the Vaisala 

frequency itself, The details of how this component ofthe motion builds up must 
be sought by using approximations appropriate a t  times earlier than those for 
which the present techniques are valid, but its spatial structure as t + 00, the 
contribution to (20), (21) and ( 2 2 )  from the branch points of the integrals at  
s = iN, is in agreement with what we expect from the nature of the equation 
governing harmonic motion, according to which the motion at the Vaisala fre- 
quency in a fluid in which the  Vaisala frequency N shows a striking, if somewhat 
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superficial, resemblance to the Taylor column in the case of pure rotation. Any 
harmonically varying dynamical variable satisfies an equation of the form 

From this, if CT = N ,  the fields may vary at  most linearly with z. In  the present 
case, in which we expect finite velocities far from the source, there can be no 
vertical variation of flow at the VaisiilB; frequency. 

This means that if no oscillation at  the Vaisala frequency is imposed at  the 
source, then there can be none within the cylinder r < a circumscribing it. For 
r > a, only a decaying transient oscillation at the Vaisala frequency is possible. 
Accordingly, the integrand of (22) is regular near s = & iN for r < a and behaves 
like (s2 + N2)* near s = iN for r > a. When r > a, there is therefore a transient 
oscillation at the Vaisalii frequency which decays like t-3. For r < a, this tran- 
sient does not appear. 

8. Oscillations driven at the Vaisala frequency or at the inertial 
frequency 

If the source frequency B is equal to the V&issilii frequency N ,  then, by the 
arguments of the foregoing section, we expect the persistent motion to be ulti- 
mately confined within the cylinder r < a. If CT = N, the contribution to (22) 
from the neighbourhood of s = & iN is given by 

and 
w = (a/(a2-r2)*)cosNt if r c a 
w a t-4 if r > a. (45) 

For r < a, the integrand of (23) is regular near s = & iN  and, for r > a, it varies 
as (s2 + N2)* near s = & iN. There is thus a transient radial motion at the VBisala 
frequency only when r > a. The flow within r < a is made up of waves of vanish- 
ing group velocity and is thus an evanescent motion, exactly in phase with the 
source and carrying no energy away from it. If N = 0,  the first of (45) is Stewart- 
son’s (1953) result for the vertical velocity in a Taylor column above a spherical 
source. Stewartson also found a persistent swirling velocity v outside of the 
Taylor column in the case of zero stratification, but when oscillations at  a non- 
zero Vsiisiilii frequency N are considered, this component ultimately decays as 
t-*. 

If the source frequency CT is equal to the inertial frequency f ,  we similarly 
expect the motion ultimately to be confined to - a < x < a. In this case, (22) and 
(23) yield u cc cos at with no persistent vertical motion for I x I < a and no per- 
sistent velocities elsewhere. Again, the motion is of the evanescent sort. 

9. Other features of the motion 
At certain locations in space this inviscid calculation produces persistent 

oscillations at  frequencies other than B. These are, of course, artifacts of the 
inviscid world, but they are always understandable in terms of the properties of 
inertial-internal waves. 
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Exactly above the source, at  6' = 0, the frequencies 2, of the two wave trains 
emitted tangentially from the source are equal and the result is a persistent 
oscillation at frequency (f2a2/z2 + N 2  (1 - a2/z2))&. The waves making up this 
oscillation propagate their energy nearly vertically so that their group velocity 
nearly vanishes. This makes the motion at  8 = 0 very slow in approaching any 
final steady amplitude even though there is no continuing flux of energy out of 
the source in this direction. A very similar state of affairs prevails in the equatorial 
plane of the source, resulting in a persistent oscillation at  frequency 

( f2  (1  - d / r 2 )  + N2a2/r2)+. 

On the source, a residue of waves of infinitesimal length which never propagate 
their energy away from the source results in a persistent oscillation at 

( f 2  cos2 8 + N2 sin2 8)s. 

Finally at r = a, on the cylinder circumscribing the source, and at  x = +a,  on 
the two horizontal planes tangent to the source at its poles, the decay of the 
transient motion is altered because one of the transient wave trains has the 
Vaisiila frequency or the inertial frequency and so does not transport energy 
away from the source. 

The action of viscosity will, of course, damp all of these oscillations and will 
generally wipe out all features of the inviscid motion which are due to the exist- 
ence of vanishingly short waves carrying energy with vanishingly small speed. 
In particular, the flow driven at  the source frequency will not ultimately become 
singular along the two tangent cones parallel to the direction of energy flow. It is 
easy in principle to extend Bretherton's approximate allowance for viscosity in 
the structure of the Taylor column to the present case, but we shall omit the 
details here. 

10. Motion at various source frequencies 
The Taylor column phenomenon is associated with those waves which propa- 

gate energy at vanishingly small frequencies. If the fluid rotates but is not 
stratified, energy being carried along a cone of constant 0 is associated with waves 
of frequency CT = f sin (0) .  By (31), the velocity of energy propagation vanishes 
when cr = f but is non-zero and vertical when cr = 0. If the fluid is stratified but 
does not rotate, energy being carried along cones of constant 8 is associated with 
waves of frequency cr = N cos (8). By (31)) the velocity of energy propagation 
vanishes when cr = N but is non-zero and horizontal when CT = 0. But if both 
rotation and stratification are present simultaneously, then energy being carried 
along cones of constant 8 is associated with waves of frequency 

cr = ( N 2  cos2 8 +f2 sin2 8)*. 

By (31)) the velocity of energy propagation is non-zero only for cr between (but 
not equal to either of)f and N .  The possibility of a Taylor column in the tradi- 
tional sense is then lost and the slow motion of the fluid differs greatly from that 
which obtains when either N or f vanish separately. 
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If the source oscillates at a frequency outside of the range f to N ,  the entire 
wave-like nature of the motion is lost. The governing equation (44) is elliptic and 
reduces to Laplace’s equation if the vertical co-ordinate is resealed by the real 
factor ((u2 - N2)/(a2-f2))+.  The boundary condition corresponding to (13) is 
then to be applied at  the spheroid r2+d2(u2-f2)/(v2-N2) = u2. The solution, 
the potential flow exterior to a spheroidal source in a perfect fluid, becomes the 
desired solution of (44) with appropriate boundary conditions when rewritten 
in the unsealed verticd co-ordinate. Direct evaluation of the residues at  s = & iu 
in (22), (23) and (24) shows that for large R/a and large 0, 

w=-  cos ut, I a2 cos 8 ((r2 - f 2) (u2 - N2)* 

R2 (02 - u;)a 

and 

a2 sin 8 (u2 - f 2 )  (u2- N2)* u = -  cos ut 
R2 ((T2 - v;)3 

v = (p) ui. 

I f  u 9 f and (T N ,  this reduces to the flow exterior to a spherical source 
in a perfect fluid, as the previous reasoning indicates that it must. I f f  = 0, we 
have 

This clearly vanishes as (T approaches N from above unless 8 = 0, when it grows 
without limit. As 0 approaches N, the flow field, spherically symmetric for large 
CT, is stretched vertically towards the well-defined vertical beam of non-zero 
velocity which we expect above the source when (T = N. A similar remark may be 
made concerning the horizontal velocity in the equatorial plane of a distant 
source in a rotating but non-stratified fluid. 

We summarize the properties of the flow far from the source in an unbounded 
fluid as they vary with source frequency. If the fluid is stratified but not rotating 
(f2 = 0, N2 > 0 ) ,  very slow source frequencies result in motions which are 
confined between the two horizontal planes z = f a tangent to the source at its 
poles. In  the present cylindrically symmetric case, the persistent motion is 
entirely in the radial direction, but of course a non-zero component of azimuthal 
velocity would be possible in the non-symmetric case. The source must continue 
to do work on this layer of fluid, for the motion is composed of waves of non-zero 
group velocity and continuously carries energy away from the source. Motions 
for which 0 < u < N are confined almost entirely to the region between the two 
cones parallel to 8 = arccosc/N but tangent to the source above and below. 
Again, the source must continuously do work to maintain the motion. When 
c = N ,  the motion is confined to the interior of the vertical cylinder r < a and 
has the structure in space of the Taylor column which the same source, acting at 
zero frequency in a rotating non-stratified fluid, would produce. But, in contrast 
to the Taylor column case, the motion at  0 = N is evanescent and requires no 
work by the source for its maintainence. When (T is slightly greater than N ,  the 
periodic motion is no longer confined within this sharply defined region. It is 
largest directly above the source but now varies smoothly with colatitude. 
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Finally, as u becomes much greater than N ,  the stratification has an ever smaller 
effect on the motion and, in the limit v / N  -+ GO, the motion is simply that due to EL 

spherical source in an unstratified perfect fluid. No work by the source is required 
to maintain the motion when (T > N .  

FIGURE 3. Variation in direction perpendicular to cone 0 = 0, of sin (at) component of 
radial velocity (solid line) and normal velocity (dashed line) according to (42). Radial 
velocity is in -wits of 

with normal velocity in units of (a/R)  times this quantity. The variation of the cos (d) 
component is obtained by reflecting this plot through &/a = 0. 

The motions produced by a source in a rotating but non-stratified fluid 
(N2 = 0, f z  > 0) are very similar. When the source frequency is very slow, the 
motion is in a Taylor column confined to the vertical cylinder r < a. The source 
continues to do work to maintain this motion in an unbounded fluid. If 0 < u < f ,  
motion is confined to the vicinity of the two cones parallel to 0 = arc sin olf but 
tangent to the source above and below. When v = f, the motion is entirely 
horizontal, between the planes tangent to the source at  its poles and carries no 
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energy away from the source. For c slightly greater than f, the motion remains 
primarily horizontal but is no longer confined within a well-defined region. 
Finally, as r/f -+ 00, the motion approaches that to be expected in the non- 
rotating perfect fluid case. 

The motion when both rotation and stratification are present resembles either 
the first case or the second, depending upon whether N > f o r  f > N ,  for fie- 
quencies greater than the smaller of N or f .  For lower frequencies, including zero, 
the flow is again an appropriately stretched potential flow carrying no energy 
away from the source. 

This research was supported by the Office of Naval Research (Nonr 2216-23). 

REFERENCES 
BRETHERTON, F. P. 1967 The time-dependent motion due to  a cylinder moving in an 

ECKART, C. 1960 Hydrodynamics of Oceans and Atmospheres. Oxford: Pergamon. 
MORGAN, G. W. 1953 Remarks on the problem of slow motions in a rotating fluid. Proc. 

MORSE, P. M .  & FESHBACH, M. 1953 Methods of Theoretical Physics, I and 11. New York: 

PHILLIPS, 0. M. 1963 Energy transfer in rotating fluids by reflexion of inertial waves. 

SANDSTROM, H. 1966 On the importance of topography in generation and propagation 

STEWARTSON, K. 1952 On the slow motion of a sphere along the axis of a rotating fluid. 

STEWARTSON, K. 1953 A weak spherical source in e rotating fluid. Quart. J .  Mech. Appl. 

unbounded rotating or stratified fluid. J .  Fluid Mech. 28, 545-70. 

Cumb. Phil. SOC. 49, 362-4. 

McGraw-Hill. 

Phys. Fluids, 6, 513-20. 

of internal waves. Ph.D. Thesis, University of California, San Diego. 

Proc. Cumb. Phil. SOC. 48, 168-77. 

Math. 6, 45-9. 


